商品編號:DJAA2V-A900HRF7W

可觀測性入門指南:Logs、Metrics、Traces三大實戰應用,用24個Lab鞏固你的SRE技能樹(iThome鐵人賽系列書)

驚喜優惠
$537
$680
  • P幣

    全盈+PAY單筆消費滿1200回饋80P幣(限量)

  • 登記送

    【全家】單筆滿$350純取貨/取貨付款訂單登記送日式稻荷壽司兌換券乙張(限量)

付款方式
出貨
  • PChome 倉庫出貨,24小時到貨
配送
宅配滿$490免運,超取滿$350免運
  • 宅配到府(本島/低溫)
    滿$699免運
  • 宅配到府(本島/常溫)
    滿$490免運
  • 超商取貨(常溫)
    滿$350免運
  • 超商取貨(低溫)
    滿$699免運
  • i郵箱(常溫)
    滿$290免運

商品評價

4.0
共 1 則評價
5.0
0%
4.0
100%
3.0
0%
2.0
0%
1.0
0%
最相關
*銘*
2024/10/03
商品詳情
作者:
ISBN:
9786263339538
出版社:
出版日期:
2024/09/10
  • 內文簡介

  • <內容簡介>

    全面介紹 Grafana、Prometheus、Loki、OpenTelemetry 等核心工具!
    實現全面的系統監控和分析!
    從零開始,構建強大的可觀測性架構

    概念導覽
    深入淺出解析可觀測性概念

    完整範例
    使用 Docker Compose 展示多種實戰範例

    多處適用
    Kubernetes 與傳統服務皆適用

    資訊整合
    結合 Metrics、Logs 和 Traces 全面洞察
    ---
    提升穩定/增加效率/結合應用
    無論前後端,全面掌握系統運行!

    本書改編自第15屆 iThome 鐵人賽 Cloud Native 組冠軍系列文章《時光之鏡:透視過去、現在與未來的 Observability》,提供完整且易於理解的可觀測性學習路徑,涵蓋核心概念和實踐方法。詳細介紹 Grafana、Prometheus、Loki、OpenTelemetry 等工具,並透過多個實戰範例,展示如何實現系統的可觀測性。

    不僅如此,本書還特別強調了如何結合應用各種可觀測性資訊,讓脈絡更加豐富,有別於傳統的監控方法。新增的 Grafana Faro 章節讓前端服務也能配有可觀測性,並與後端的可觀測性結合,實現全面的監控和分析。

    可觀測性不僅是技術的提升,更是對系統運行的全面掌握。透過《可觀測性入門指南》,你將學會如何利用主流工具和方法,提升系統穩定性和運行效率。本書將成為你在可觀測性領域的得力助手,幫助你在工作中如虎添翼。期待與你一同探索可觀測性的無窮樂趣!

    ❖目標讀者
    ●追蹤 Bug 感到頭痛的 Dev:學習高效定位和解決問題的方法與工具。
    ●定位線上問題疲於奔命的 Ops:提升問題排查效率,減少故障排除時間。
    ●希望了解和導入可觀測性的工程師:從基礎到實踐,全方位學習快速上手。


    ★專家推薦:

    本書除了分解架構之外,還分享並解釋了這些架構背後的思路,值得所有 IT 從業者參考與學習。對於每個專案,不應盲目使用,而應以自己的方式進行分類,並將這種方法應用於其他相似的專案中。透過這種方式,可以加深對專案的理解,提升對整體架構的掌握。希望讀者能透過本書,不僅提升技術能力,還能在實踐中探索出屬於自己的學習方法,應對日益複雜的系統挑戰,成為引領技術發展的先鋒。
    邱宏瑋(hwchiu)

    本書的內容涵蓋廣泛,從三大基本的遙測信號──Metrics、Logs 和 Traces──出發,深入探討各種信號的使用場景與工具選擇。每個章節不僅介紹了理論知識,還搭配了實際操作的 Lab,使讀者能夠親自動手,迅速掌握各種工具的使用方法。這種理論與實踐相結合的方式,能幫助讀者在理解可觀測性核心概念的同時,熟練掌握操作技能。無論是初學者還是有一定經驗的技術人員,都能從中獲益匪淺。在閱讀這本書的過程中,我們不僅能掌握遙測信號的理論基礎與實際操作,還能體會到可觀測性在系統維運中的重要性與實用性。
    可觀測性工程戰友 雷N


    ★目錄:

    PART1 可觀測性初探

    Chapter01 可觀測性的過去與現在
    可觀測性要解決的問題
    可觀測性資訊
    可觀測性資訊的處理與使用
    資料收集 Pattern
    常見元件名稱
    小結
    參考資料

    Chapter02 Grafana──洞察一切資訊的羅盤
    Components
    Data Source
    Explore
    Dashboard
    Alerting
    Concepts
    Dashboard 設計的最佳實踐
    Lab
    小結
    參考資料

    PART2 Metrics

    Chapter03 Metrics 緒論──萬物皆可度量
    指標的基礎定義
    指標資訊的處理流程
    生成
    收集
    儲存
    使用
    小結

    Chapter04 Prometheus──照亮來時路與前方途的火炬
    Components
    Prometheus Server
    Exporter
    Prometheus Client Library
    Alerting
    Concepts
    Scrape Job
    Prometheus Web UI Status
    Metric Types
    PromQL
    Lab
    Prometheus 與 PromQL 操作練習
    Prometheus 與 Exporter
    小結
    其他補充資料

    Chapter05 Monitoring Best Practices──監控的黃金法則
    The USE Method
    The Four Golden Signals
    The RED Method
    Lab
    小結
    參考資料

    Chapter06 Long-Term Storage──指標的記憶殿堂
    Mimir──收羅萬象的智者
    Features
    Concepts
    Lab
    Cortex──指標長期儲存的大師兄
    高可用性(High Availability)與 Hash Ring
    Lab
    Thanos──統御 Prometheus 群集的霸者
    Concepts
    Lab
    小結
    參考資料
    StatsD Library
    StatsD Exporter
    Lab
    StatsD + Graphite
    小結
    參考資料

    Chapter07 StatsD──捍衛效能的守護神
    Concepts
    Metrics Type
    UDP
    StatsD Library
    StatsD Exporter
    Lab
    StatsD + Graphite
    小結
    參考資料

    Chapter08 Zabbix──指標界的沙場老兵
    Concepts
    Host
    Template
    Group
    Web Scenario
    Lab
    小結
    參考資料

    PART3 Logs

    Chapter09 Logs 緒論──紀錄的一切都將成為呈堂證供
    日誌資訊的處理流程
    生成
    收集
    儲存
    使用
    小結

    Chapter10 Loki──解開日誌空間與時間束縛的法杖
    Concepts
    Label
    LogQL
    快還要更快
    儲存
    Loki Docker Driver
    Lab
    小結
    參考資料

    Chapter11 Promtail──Loki 御用 Log 收集器
    Concepts
    Tail
    Service Discovery
    Pipeline
    Lab
    小結
    參考資料

    Chapter12 Fluent Bit──資料收集界的萬能瑞士刀
    Concepts
    Event
    Config File
    Pipeline
    Service
    Lab
    Basic
    Container Log with Loki
    Container Log with Vivo
    小結
    參考資料

    Chapter13 Vector──速度至上的資料收集界新星
    Concepts
    Pipeline
    Config
    Lab
    Basic
    Container Log with Loki
    小結
    參考資料

    PART4 Traces

    Chapter14 Traces 緒論──看系統,一個兩個三個四個,連成線
    分散式追蹤發展歷程
    Trace 資訊的處理流程
    生成
    收集
    儲存
    使用
    小結
    參考資料

    Chapter15 OpenTelemetry SDK──Zero-code Instrumentation 給你一對翅膀
    Zero-code Instrumentation
    Config
    Logging with OpenTelemetry
    Python Zero-code Instrumentation
    Java Zero-code Instrumentation
    Lab
    小結
    參考資料

    Chapter16 Tempo──小孩才做選擇,Trace 我全都要
    Concepts
    TraceQL
    儲存格式
    Metrics-generator
    Lab
    Basic
    Fake Traces
    小結
    參考資料

    Chapter17 Jaeger──系統軌跡,無所遁形
    Concepts
    Architecture
    API 選擇
    Sampling
    Lab
    小結
    參考資料

    Chapter18 OpenTelemetry Collector──依賴反轉,解耦應用程式與儲存後端
    Concepts
    Deployment
    Configuration
    Lab
    小結
    參考資料

    PART5 綜合應用

    Chapter19 Observability Signal Correlation──使用 Grafana 三劍合一,發揮綜效
    Metrics and Logs
    Metrics to Traces
    Traces and Logs
    Traces to Metrics
    Lab
    小結
    參考資料

    Chapter20 Span Metrics──OpenTelemetry Collector 的 Trace 鍊金術
    Metrics from Traces
    Jaeger Service Performance Monitoring
    Lab
    Basic
    Jaeger SPM
    小結
    參考資料

    Chapter21 Grafana Cloud 與 Alloy──Grafana Labs 的野望
    Grafana Cloud
    Grafana Alloy
    Configuration
    Metrics
    Logs
    Traces
    To Grafana Cloud
    Lab
    Grafana Alloy
    Grafana Cloud
    小結
    參考資料

    Chapter22 Profiles 與 eBPF──Unlocking The Kernel
    Profiles
    Grafana Pyroscope
    eBPF
    Grafana Beyla
    Lab
    Pyroscope
    Beyla
    小結
    參考資料

    Chapter23 Faro──前端的可觀測性
    Concepts
    Web Vital
    Architecture
    Log-based Metrics
    Usage
    Alloy
    Faro Web SDK
    Faro Web Tracing
    Lab
    小結
    參考資料

    Chapter24 In Production 1──準備釋放你的 Observability 原力吧!
    成本與效益
    網路的複雜性
    告警疲勞
    小結

    Chapter25 In Production 2 ──能力越強責任越大,別成為單點故障
    可擴展性 Scalability
    Grafana Stack
    Kafka
    高可用性 High Availability
    Lab
    Loki Scalable Monolithic
    Jaeger with Kafka
    小結
    參考資料

    Chapter26 In Production 3──如果資料要加上一個期限,我希望是一萬年
    儲存哪些
    Metrics
    Traces
    儲存多久
    怎麼儲存
    Lab
    Loki Tempo Mimir with MinIO
    OpenTelemetry Collector Filter
    小結

    Chapter27 總結──可觀測性的未來
    可觀測性開源專案的未來──CNCF Projects
    可觀測性資訊的未來
    可觀測性技術的未來
    可觀測性商業的未來
    結語
    參考資料


    <作者簡介>

    劉義瑋 (Blueswen)

    目前擔任 DevOps Engineer,樂於分享與交流技術。

    擔任開發人員時前端、後端、ML 服務都略有接觸,有感於問題排除與監控的不足,於是開始研究與推廣可觀測性。

    個人網站:https://blueswen.github.io/

    【演講經歷】
    PyCon Taiwan 2024 - 全方位強化Python服務可觀測性:以 FastAPI 和 Grafana Stack 為例
    MWC 2023 - 從零開始打造可觀測性平台
    DevOpsDays Taipei 2023 - 可觀測性實踐

    iThome 鐵人賽獲獎
    2023 Cloud Native 組冠軍《時光之鏡:透視過去、現在與未來的 Observability》
購物須知
寄送時間
全台灣24h到貨,遲到提供100元現金積點。全年無休,週末假日照常出貨。例外說明
送貨方式
透過宅配送達。除網頁另有特別標示外,均為常溫配送。
消費者訂購之商品若經配送兩次無法送達,再經本公司以電話與Email均無法聯繫逾三天者,本公司將取消該筆訂單,並且全額退款。
送貨範圍
限台灣本島與離島地區註,部分離島地區包括連江馬祖、綠島、蘭嶼、琉球鄉…等貨件,將送至到岸船公司碼頭,需請收貨人自行至碼頭取貨。注意!收件地址請勿為郵政信箱。
註:離島地區不配送安裝商品、手機門號商品、超大材商品及四機商品。
售後服務
缺掉頁更換新品
執照證號&登錄字號
本公司食品業者登錄字號A-116606102-00000-0
關於退貨
  • PChome24h購物的消費者,都可以依照消費者保護法的規定,享有商品貨到次日起七天猶豫期的權益。(請留意猶豫期非試用期!!)您所退回的商品必須回復原狀(復原至商品到貨時的原始狀態並且保持完整包裝,包括商品本體、配件、贈品、保證書、原廠包裝及所有附隨文件或資料的完整性)。商品一經拆封/啟用保固,將使商品價值減損,您理解本公司將依法收取回復原狀必要之費用(若無法復原,費用將以商品價值損失計算),請先確認商品正確、外觀可接受再行使用,以免影響您的權利,祝您購物順心。
  • 如果您所購買商品是下列特殊商品,請留意下述退貨注意事項:
    1. 易於腐敗之商品、保存期限較短之商品、客製化商品、報紙、期刊、雜誌,依據消費者保護法之規定,於收受商品後將無法享有七天猶豫期之權益且不得辦理退貨。
    2. 影音商品、電腦軟體或個人衛生用品等一經拆封即無法回復原狀的商品,在您還不確定是否要辦理退貨以前,請勿拆封,一經拆封則依消費者保護法之規定,無法享有七天猶豫期之權益且不得辦理退貨。
    3. 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,一經您事先同意後始提供者,依消費者保護法之規定,您將無法享有七天猶豫期之權益且不得辦理退貨。
    4. 組合商品於辦理退貨時,應將組合銷售商品一同退貨,若有遺失、毀損或缺件,PChome將可能要求您依照損毀程度負擔回復原狀必要之費用。
  • 若您需辦理退貨,請利用顧客中心「查訂單」或「退訂/退款查詢」的「退訂/退貨」功能填寫申請,我們將於接獲申請之次日起1個工作天內檢視您的退貨要求,檢視完畢後將以E-mail回覆通知您,並將委託本公司指定之宅配公司,在5個工作天內透過電話與您連絡前往取回退貨商品。請您保持電話暢通,並備妥原商品及所有包裝及附件,以便於交付予本公司指定之宅配公司取回(宅配公司僅負責收件,退貨商品仍由特約廠商進行驗收),宅配公司取件後會提供簽收單據給您,請注意留存。
  • 退回商品時,請以本公司或特約廠商寄送商品給您時所使用的外包裝(紙箱或包裝袋),原封包裝後交付給前來取件的宅配公司;如果本公司或特約廠商寄送商品給您時所使用的外包裝(紙箱或包裝袋)已經遺失,請您在商品原廠外盒之外,再以其他適當的包裝盒進行包裝,切勿任由宅配單直接粘貼在商品原廠外盒上或書寫文字。
  • 若因您要求退貨或換貨、或因本公司無法接受您全部或部分之訂單、或因契約解除或失其效力,而需為您辦理退款事宜時,您同意本公司得代您處理發票或折讓單等相關法令所要求之單據,以利本公司為您辦理退款。
  • 本公司收到您所提出的申請後,若經確認無誤,將依消費者保護法之相關規定,返還您已支付之對價(含信用卡交易),退款日當天會再發送E-mail通知函給您。