內文簡介
<內容簡介> ☆好評再上市☆ ▶▶▶ 從深度學習的基礎知識到案例,快速掌握JAX深度學習框架!◄◄◄ 本書為繁體版第一本的JAX全方位指南!JAX是一個用於高性能數值計算的工具,專門為深度學習領域所設計。本書從基礎概念開始談起,教導讀者在Windows環境下架設WSL,以方便使用GPU,而不需要全新從Linux安裝,接著開始介紹一些機器學習和深度學習的理論。從第四章開始,便是JAX的正式介紹,包括了XLA、自動微分等,以及談到JAX和Numpy之間的關聯,並且有實際的程式說明。 到第六章開始,便陸續介紹JAX的開發細節,然後正式使用JAX進行深度學習的程式應用,包括CNN中的VGG模型,或是將JAX和TF結合,運用兩者間的搭配來解決大部分的問題。待前面的基礎都已經完備後,便引導你來放手使用JAX撰寫自訂函數,以及帶讀者使用JAX的高級套件,如experimental和nn。最後則是進階CNN的開發,使用ResNet來完成CIFAR100的分類、用JAX解決NLP的問題,以及進一步使用JAX來實作GAN網路。 不管你先前是TF或PyTorch的使用者,當你發現JAX的程式碼行數是TF的1/10,PyTorch的1/3,速度更快,且程式碼更容易理解,更加Pythnoic,你真的可以開心地踏入JAX的深度學習世界! 【本書看點】 ✪ 從零開始學JAX ✪ 把numpy放入TPU和GPU的數值套件 ✪ JAX如何實作XLA ✪ 使用JAX實作CNN ✪ 用JAX自訂函數 ✪ JAX實作ResNet CIFAR100資料集分類 ✪ 用JAX實作自然語言處理的Word Embedding ✪ 用JAX實作GAN生成對抗網路 【適合讀者】 ☛ 人工智慧入門讀者。 ☛ 深度學習入門讀者。 ☛ 機器學習入門讀者。 ☛ 大專院校人工智慧專業的師生。 ☛ 專業教育訓練機構的師生。 ☛ 其他對智慧化、自動化感興趣的開發者。 ★目錄: 01 JAX從零開始 1.1 JAX來了 1.2 JAX的安裝與使用 1.3 JAX實戰—MNIST手寫體的辨識 1.4 本章小結 02 一學就會的線性回歸、多層感知機與自動微分器 2.1 多層感知機 2.2 JAX實戰—鳶尾花分類 2.3 自動微分器 2.4 本章小結 03 深度學習的理論基礎 3.1 BP神經網路簡介 3.2 BP神經網路兩個基礎演算法詳解 3.3 回饋神經網路反向傳播演算法介紹 3.4 本章小結 04 XLA與JAX一般特性 4.1 JAX與XLA 4.2 JAX一般特性 4.3 本章小結 05 JAX的高級特性 5.1 JAX與NumPy 5.2 JAX程式的撰寫規範要求 5.3 本章小結 06 JAX的一些細節 6.1 JAX中的數值計算 6.2 JAX中的性能提高 6.3 JAX中的函數自動打包器—vmap 6.4 JAX中的結構儲存方法Pytrees 6.5 本章小結 07 JAX中的卷積 7.1 什麼是卷積 7.2 JAX實戰—基於VGG架構的MNIST資料集分類 7.3 本章小結 08 JAX 與TensorFlow的比較與互動 8.1 基於TensorFlow的MNIST分類 8.2 TensorFlow與JAX的互動 8.3 本章小結 09 遵循JAX函數基本規則下的自訂函數 9.1 JAX函數的基本規則 9.2 Jaxpr解譯器的使用 9.3 JAX維度名稱的使用 9.4 本章小結 10 JAX中的高級套件 10.1 JAX中的套件 10.2 jax.experimental套件和jax.example_libraries的使用 10.3 本章小結 11 JAX實戰—使用ResNet完成CIFAR100資料集分類 11.1 ResNet基礎原理與程式設計基礎 11.2 ResNet實戰—CIFAR100資料集分類 11.3 本章小結 12 JAX實戰—有趣的詞嵌入 12.1 文字資料處理 12.2 更多的詞嵌入方法—FastText和預訓練詞向量 12.3 針對文字的卷積神經網路模型—字元卷積 12.4 針對文字的卷積神經網路模型—詞卷積 12.5 使用卷積對文字分類的補充內容 12.6 本章小結 13 JAX實戰—生成對抗網路(GAN) 13.1 GAN的工作原理詳解 13.2 GAN的數學原理詳解 13.3 JAX實戰—GAN網路 13.4 本章小結 附錄A Windows 11 安裝GPU版本的JAX <作者簡介> 王曉華 計算機專業講師,研究方向為雲計算、大數據與人工智能。著有《Spark 3.0大數據分析與挖掘:基於機器學習》、《TensorFlow深度學習應用實踐》、《OpenCV+TensorFlow深度學習與計算機視覺實戰》、《TensorFlow知識圖譜實戰》、《TensorFlow人臉識別實戰》、《TensorFlow語音識別實戰》、《TensorFlow 2.0卷積神經網路實戰》、《Keras實戰:基於TensorFlow2.2的深度學習實踐》、《TensorFlow深度學習從零開始學》、《深度學習的數學原理與實現》等圖書。
商品編號:DJAA2V-A900J19HF
Tensorflow接班王者:Google JAX深度學習又快又強大(好評回饋版)
驚喜優惠
折扣價
$517
網路價
$780
- P幣
11月全盈+PAY 單筆滿$3000送50P幣 限量,送完為止
- 登記送
【全家】單筆滿$350之【全家】純取貨/取貨付款訂單 登記送熱經典拿鐵(中杯)兌換券乙張(限量)
- 登記送
【加碼翻倍送】APP限定-全站指定品單筆滿$1萬登記送總額4,000折價券禮包(使用效期60天)
- 登記送
【加碼翻倍送】APP限定-全站指定品單筆滿$10,000登記送1,000P幣(使用效期30天)
- 登記抽
【超狂回饋節】1114全站指定品單筆滿$5000登記抽11,111P幣(使用效期30天/App限定)
- 登記送
11/14 3C/百貨指定品單筆滿$5000登記送BOXMANxWOKY彈蓋保溫瓶(顏色隨機/限量)
付款方式
- 信用卡、無卡分期、行動支付,與其他多種方式
- PChome 聯名卡最高6%,新戶再享首刷禮1000P
配送資訊
- 可宅配到府,滿 $490 免運
- 可超商取貨,滿 $350 免運
- 可 i 郵箱取貨,滿 $290 免運
銀行卡、行動支付
優惠總覽
商品詳情
相關分類
購物須知
作者相關書籍
王晓华著

